APPENDIX E

SEWRPC Memorandum –February 23, 2004– Draft memo of CSO & SSO Pollutant Concentrations for Purposes of Water Quality Modeling – Dated October 29, 2003 [Addresses zinc and copper concentration development in MMSD's SSOs]

SEWRPC STAFF MEMORANDUM

TO: Pat Marchese and Mary Recktenwalt

FROM: Bob Biebel, Ron Printz, Thomas Slawski, and Joseph Boxhorn

DATE: February 23, 2004

SUBJECT: DRAFT MEMO OF CSO & SSO POLLUTANT CONCENTRATIONS FOR PURPOSES OF WATER QUALITY MODELLING DATED OCTOBER 29, 2003

PURPOSES OF WATER QUALITY MODELLING DATED OCTOBER 29, 2003

With regard to the subject memorandum and a subsequent request for review of CSO data regarding Total Suspended Solids (TSS), Copper, and Zinc chemistry from Triad Engineering staff on February 20, 2004, attached hereto as Exhibit A, we have developed several recommendations for your consideration.

CSO Trend Analysis

Based upon additional trend analyses performed by Triad Engineering staff attached hereto as Exhibit B, we suggest that the subject memorandum include the linear regression analyses of Zinc and Copper as a function of time. In both cases, the *p* values in the regression statistics are greater than 0.05, showing that there were no statistically significant trends in these factors over time during the period sampled (Exhibit B). With respect to these two variables, the regressions indicate that the average composition of the CSOs has not changed over the period sampled. Hence, these analyses suggest that change over the sampled period in the composition of the CSOs, with respect to Zinc and Copper is not a major consideration in the selection of CSO values for the model and supports the existing approach in the original draft memo.

Zinc and Copper Concentrations for SSO and CSO

Based upon review of additional analyses performed by Triad Engineering, we suggest that the subject memorandum include the linear regression analyses of CSO data from MMSD of Zinc concentration as a function of TSS concentrations and Copper concentrations as a function of TSS concentrations separately (see Exhibit B). The p values in the regression statistics are less than 0.0001 for both analyses and shows that there are statistically significant trends between these constituents. The R^2 values in the regression statistics were 0.66 for the Zinc and 0.65 in the Copper analysis, indicating that these trends accounted for about 66 and 65 percent of the variation in each data set, respectively (see Exhibit B). In addition, the linear regression model from each analysis indicates that it matches the recommended CSO mean concentrations of 0.09 and 0.12 mg/L for Zinc and 0.02 mg/L for Copper as shown in Table 1 below. For these reasons, we suggest that the recommended SSO mean concentrations for Zinc and Copper be based upon this linear regression model with TSS concentrations as shown in Tabled 2 below.

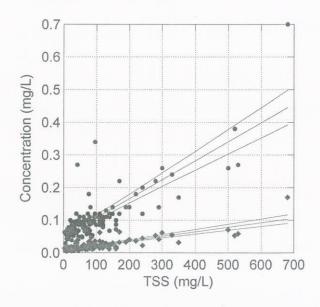


Figure 1.

Regression analysis between TSS versus

Zinc and Copper concentrations from the

MMSD CSO data, which include 95 percent confidence intervals.

ZINC

◆ COPPER

Table 1
Recommended CSO Mean Concentrations For Modeling

Parameter	BOD ₅ (mg/L)	Total Suspende d Solids (mg/L)	Fecal Coliform (#/100 mL)	Phosphorus (mg/L)	Copper ICP (mg/L)	Zinc ICP (mg/L)	Organic Nitrogen-as N (mg/L)	Ammonia-as N (mg/L)	Nitrate/Nitri te-as N (mg/L)
Source	MMSD sampling	MMSD sampling	MMSD sampling	MMSD sampling	MMSD sampling	MMSD sampling	ORVWSC sampling*	ORVWSC sampling*	ORVWSC sampling*
Menomonee River (all but CT 5/6)	9	56	160,000	0.64	0.02	0.09	1.3	0.70	1.0
Menomonee River (only CT 5/6)	54	116	160,000	1.07	0.02	0.12	5.4	2.0	1.0
Kinnickinnic River	9	56	160,000	0.64	0.02	0.09	1.3	0.70	1.0
Milwaukee River	9	56	160,000	0.48	0.02	0.09	1.3	0.70	1.0

^{*}Kim Mays from the Ohio River Valley Water Sanitation Commission (ORVWSC) provided sampling data August 19, 2003.

Table 2
Recommended SSO Mean Concentrations For Modeling (bolded values indicate recommended changes from the original draft memo)

Parameter	BOD ₅ (mg/L)	Total Suspended Solids (mg/L)	Fecal Coliform (#/100 mL)	Phosphorus (mg/L)	Copper (mg/L)	Zinc (mg/L)	Organic Nitrogen as N (mg/L)	Ammonia as N (mg/L)
Source	MMSD sampling	MMSD sampling	MMSD sampling	MMSD sampling	MMSD sampling*	MMSD sampling*	ORVWSC sampling**	ORVWSC sampling**
All Watersheds	31	126	530,000	2.2	0.02	0.13	3.3	1.3

Assume: 1) Nitrate, nitrite, chlorophyll a, and dissolved oxygen to be negligible. 2) Treat temperature similar to how it is treated for storm water runoff. Note: Fecal coliform concentration was rounded to two significant figures.

*Based upon CSO chemistry data provided by MMSD.

* * *

TMS/JEB #92035 V1 - DRAFT CSO & SSO POLLUTANT CONC MEMO-022304

^{**}Kim Mays from the Ohio River Valley Water Sanitation Commission (ORVWSC) provided sampling data August 19, 2003.

Exhibit A to Appendix E

EXHIBIT A

From: Jeremy Nitka [jeremy.nitka@triadengineering.com]

Sent: Friday, February 20, 2004 1:25 PM

To: Thomas M. Slawski Subject: Metals Regression

Tom,

I've attached a draft of some statistics on the Zinc and Copper in the CSOs. There are box plots by watershed, ANOVAs by collector with the pairwise comparisons, and a regression for each parameter versus date. We are interested in using a regression between TSS and Zn/Cu to estimate the concentration of Zn and Cu in the SSOs. The last two tabs in the spreadsheet contain these regressions. Please review the regression and let us know your opinion if we can use it to estimate the zinc and copper in the SSOs

Thanks

Jeremy Nitka, EIT Project Engineer Triad Engineering, Inc. 325 E Chicago St 4th Floor Milwaukee, WI 53202 Ph: 414-291-8840

Fax: 414-291-8841

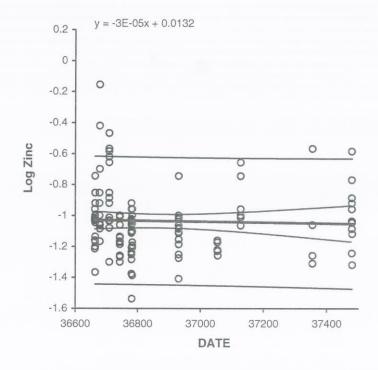
Exhibit B to Appendix E

Log Zinc and Copper - All Event Dates and All Collectors

Fit Log Zinc v DATE

Performed by Jeremy Nitka Date 20 February 2004

n 136


R² 0.00

Adjusted R² -0.01

SE 0.2076

Term	Coefficient	SE	р	95% CI of Coefficient
Intercept	0.0132	2.6434	0.9960	-5.2150 to 5.2414
Slope	0.0000	0.0001	0.6921	-0.0002 to 0.0001

Source of variation	SSq	DF	MSq	F	р
Due to regression	0.007	1	0.007	0.16	0.6921
About regression	5.777	134	0.043		
Total	5.783	135			

analysed with: Analyse-it + General 1.71

Test | Linear regression

Log Zinc and Copper - All Event Dates and All Collectors

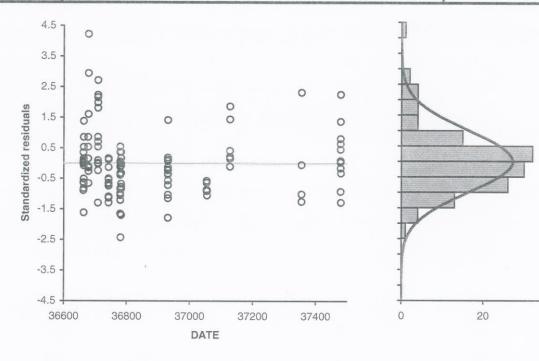
Fit Log Zinc v DATE

Performed by Jeremy Nitka

Date

Log Zinc and Copper - All Event Dates and All Collectors

Fit Log Zinc v DATE

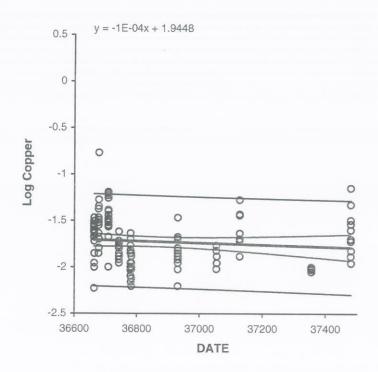

Performed by

Jeremy Nitka

Date

20 February 2004

40



Test	Linear regression		
	Log Zinc and Copper - All Event Dates and All Collectors		
Fit	Log Copper v DATE		
Performed by	Jeremy Nitka	Date	20 February 2004

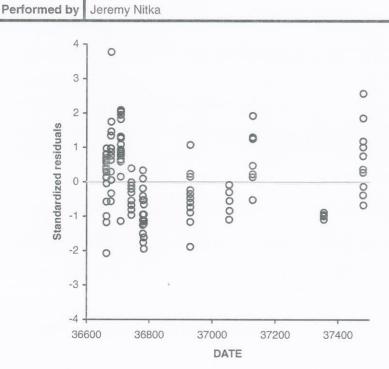
n	136
R^2	0.01
Adjusted R ²	0.00
SE	0.2497

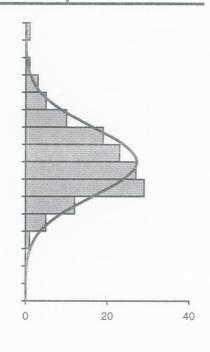
Term	Coefficient	SE	p	95% CI of Coefficient
Intercept	1.9448	3.1791	0.5417	-4.3428 to 8.2324
Slope	-0.0001	0.0001	0.2498	-0.0003 to 0.0001

 Source of variation	SSq	DF	MSq	F	р
Due to regression	0.083	1	0.083	1.34	0.2498
About regression	8.355	134	0.062	and the second	
Total	8.438	135			

Log Zinc and Copper - All Event Dates and All Collectors

Fit Log Copper v DATE


Performed by Jeremy Nitka


Date

Log Zinc and Copper - All Event Dates and All Collectors

Fit Log Copper v DATE

Date

Test Linear regression
SSO Data with Date and Collector
Fit Zinc v TSS


Performed by Jeremy Nitka

Date 20 February 2004

n	134	(cases excluded: 2 due to missing values
R ²	0.66	
Adjusted R ²	0.66	
SE	0.0446	

Term	Coefficient	SE	р	95% CI of Coefficient
Intercept	0.0500	0.0052	<0.0001	0.0397 to 0.0602
Slope	0.0006	0.0000	< 0.0001	0.0005 to 0.0007

Source of variation	SSq	DF	MSq	F	р
Due to regression	0.513	1	0.513	258.00	< 0.0001
About regression	0.263	132	0.002	1	
Total	0.776	133	*		

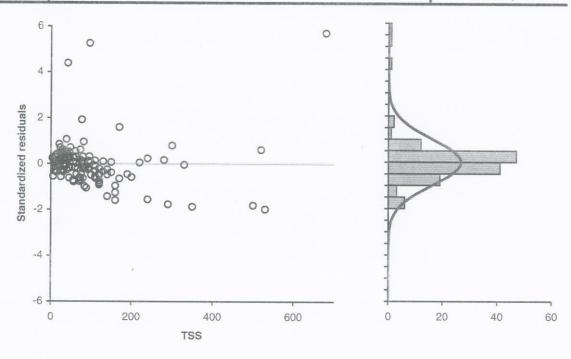
SSO Data with Date and Collector

Fit Zinc v TSS

Performed by

Jeremy Nitka

Date


SSO Data with Date and Collector

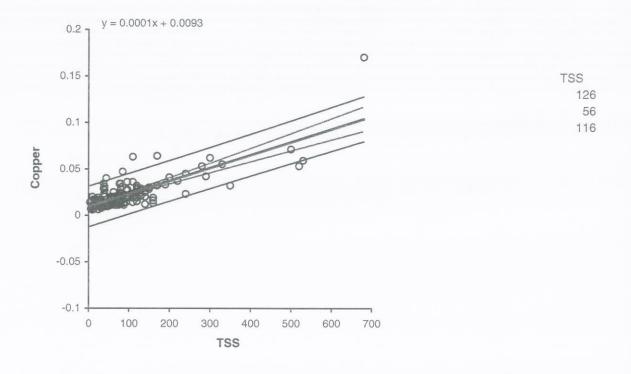
Fit Zinc v TSS

Performed by

Jeremy Nitka

Test Linear regression
SSO Data with Date and Collector
Copper v TSS

Performed by Jeremy Nitka


Adjusted

Date 20 February 2004

n	134	(cases excluded: 2 due to missing values)
R ²	0.65	
R ²	0.64	
SE	0.0110	

Term	Coefficient	SE	р	95% CI of Coefficient	
Intercept	0.0093	0.0013	<0.0001	0.0068 to 0.0118	
Slope	0.0001	0.0000	< 0.0001	0.0001 to 0.0002	

Sou	rce of variation	SSq	DF	MSq	F	р
Du	e to regression	0.029	1	0.029	240.71	<0.0001
Ai	oout regression	0.016	132	0.000		
	Total	0.045	133	1.0		

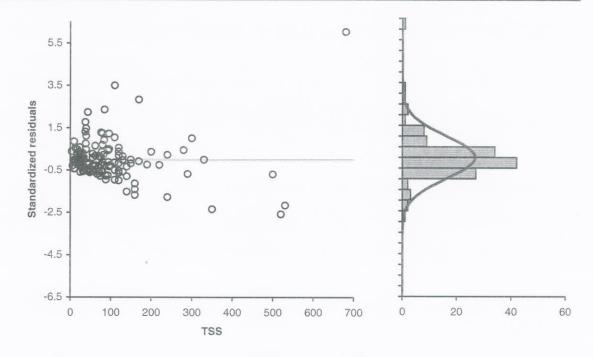
SSO Data with Date and Collector

Fit Copper v TSS

Performed by

Jeremy Nitka

Date


SSO Data with Date and Collector

Fit Copper v TSS

Performed by

Jeremy Nitka

Date

