Table of Contents

Chapter 1: Introduction ... 1-1

1.1 Purpose .. 1-1
1.2 Description and Responsibilities of Milwaukee Metropolitan Sewerage District 1-1
1.3 History of Facilities Planning .. 1-1
1.4 Purpose and Need – 2020 Facilities Plan .. 1-1
1.5 Watershed Approach to Facilities Planning 1-2
1.6 Planning Objective .. 1-2
1.7 Relationship to the Regional Water Quality Management Plan Update 1-3
1.8 Public Involvement ... 1-3
1.9 Planning Principles .. 1-3
1.10 Description of Planning Process .. 1-3
1.11 Conveyance Report Organization .. 1-3

Chapter 2: Description of Conveyance Facilities 2-1

2.1 Milwaukee Metropolitan Sewerage District System 2-1
2.1.1 Metropolitan Interceptor Sewer System 2-1
2.1.2 Near Surface Collector Sewers .. 2-7
2.1.3 Inline Storage System ... 2-7
2.1.4 Control System .. 2-7
2.1.5 Design Criteria .. 2-13
2.1.6 Policies and Programs ... 2-14
2.2 Municipal Collection Systems ... 2-15
2.3 Private Wastewater Collection Systems .. 2-16
2.4 Planning Units .. 2-16
Chapter 2

Tables
2-1 MMSD Pumping Stations ... 2-6
2-2 MMSD Diversion Chambers .. 2-8
2-3 MMSD Bypass Structures ... 2-10

Chapter 2

Figures
2-1 MMSD Conveyance System ... 2-2
2-2 Isometric Schematic of MMSD Conveyance/Storage Systems 2-3
2-3 Metropolitan Interceptor Sewer System ... 2-4
2-4 WWTP Tributary Areas ... 2-5
2-5 Combined Sewer Service Area .. 2-12

Chapter 3: Analytical Methods/Data Sources .. 3-1
3.1 Introduction ... 3-1
3.2 Approach ... 3-2
3.2.1 Modeling Objectives ... 3-2
3.2.2 Methods and Modeling Tools ... 3-2
3.3 Modeling Tools .. 3-6
3.3.1 Sewershed Wastewater Flow Model – Flow Forecasting System 3-6
3.3.2 Streamline-MOUSE: Detailed Hydraulic Model of the Metropolitan Interceptor Sewer, Near Surface Collector Sewer, and Inline Storage System 3-6
3.3.3 Mini-MOUSE: Simplified Hydraulic Model of the Metropolitan Interceptor Sewer, Near Surface Collector Sewer, and Inline Storage System 3-7
3.3.4 MACRO: Simple Volumetric/Operational Model of the Metropolitan Interceptor Sewer, Near Surface Collector Sewer, and Inline Storage System 3-7
3.4 Data Compilation ... 3-8
3.4.1 Separate Sewer Service Area Sewershed Delineation 3-8
3.4.2 Combined Sewer Service Area Sewershed Delineation 3-8
3.4.3 Partially Separated Sewershed Delineation... 3-9
3.4.4 Population... 3-9
3.4.5 Land Use... 3-9
3.4.6 Major Wastewater Users ... 3-9
3.4.7 Existing Flow Data... 3-10
3.4.8 Meteorological Data ... 3-10
3.4.9 Milwaukee Metropolitan Sewerage District Conveyance System Facilities Data...... 3-10
3.5 Flow Development – Current Wastewater Flows .. 3-11
3.5.1 Current Base Sanitary Flow.. 3-13
3.5.2 Current Infiltration and Inflow ... 3-13
3.6 Flow Model Calibration and Hydraulic Model Validation .. 3-15
3.6.1 Overview of the Calibration Process.. 3-15
3.6.2 Summary of Validation Results.. 3-15
3.7 Flow Development – Future Wastewater Flows ... 3-17
3.7.1 Modeling Assumptions for Future Flow Additions ... 3-17
3.7.2 Uniform Future Flow Generation Rates and Infiltration and Inflow Parameters........ 3-17
3.7.3 Calculation of Future Flow Additions.. 3-21

Chapter 3
Tables
3-1 Modeling Objectives.. 3-3
3-2 Sewershed Wastewater Flow Parameters in FFS .. 3-12
3-3 Calibration and Validation Events.. 3-16
3-4 Uniform Future Flow Parameters for FFS.. 3-19
3-5 Basis for Uniform Future Flow Parameters for Flow Forecasting System 3-21
3-6 Future Growth Residential Densities used to Compute Effective Area
 of Future Infiltration and Inflow... 3-22
Chapter 3

Figures
3-1 Relationship between Modeling Tools... 3-4
3-2 Future Flow Basis.. 3-18

Chapter 3

Appendices
Appendix 3A: Sewershed Modifications – Separate Sewer Service Area 3A-1
Appendix 3B: Sewershed Modifications – Combined Sewer Service Area.................. 3B-1
Appendix 3C: Conveyance System Model Calibration/Validation................................. 3C-1

Chapter 4: Conveyance Assessment – Existing 2000 Conditions...................... 4-1
4.1 Introduction.. 4-1
4.2 Modeling Strategies and Operational Parameters .. 4-2
4.3 Infiltration and Inflow Sources.. 4-3
4.4 Metropolitan Interceptor Sewer / Near Surface Collector Sewer / Inline Storage System Capacity Evaluation... 4-5
4.4.1 Extreme Event: Large Simulated Sanitary Sewer Overflow Volume – March 1960.... 4-6
4.4.2 Extreme Event: Large Simulated Combined Sewer Overflow Volume – August 1986 4-6
4.4.3 Near Surface Collector Sewer Performance.. 4-8
4.5 Sanitary Sewer Overflow and Combined Sewer Overflow Evaluation 4-8
4.5.1 Extreme Event Combined Sewer Overflow and Sanitary Sewer Overflow Volumes ... 4-8
4.5.2 Combined Sewer Overflow and Sanitary Sewer Overflow Event Frequency 4-11
4.5.3 Sanitary Sewer Overflow Locations and Volumes ... 4-12
4.5.4 Combined Sewer Overflow Locations and Volumes .. 4-12
4.6 Summary.. 4-17
Chapter 4

Tables

4-1 Model Application and Types of Results .. 4-2
4-2 Operational Parameters and Simulation Conditions .. 4-3
4-3 Relative Significance of Infiltration and Inflow Sources 4-4
4-4 Simulated Combined Sewer Overflow and Sanitary Sewer Overflow Volumes:
Two Extreme Events ... 4-10
4-5 Long-Term Simulation Combined Sewer Overflow and Sanitary Sewer Overflow
Results: Mini-MOUSE and MACRO ... 4-11
4-6 Simulated Combined Sewer Overflow and Sanitary Sewer Overflow Frequency
and Average Annual Overflow Volume Under Existing 2000 Conditions 4-17

Chapter 4

Figures

4-1 Hydraulic Restrictions: Largest Simulated SSO Event, 2000 Conditions 4-7
4-2 Hydraulic Restrictions: Largest Simulated CSO Event, 2000 Conditions 4-9
4-3 Mini-MOUSE SSO Groups, 2000 Conditions .. 4-13
4-4 Mini-MOUSE Simulated SSO Volume: 63-Year Period (1940-2002) 4-14
4-5 Mini-MOUSE CSO Groups ... 4-15
4-6 Mini-MOUSE Simulated CSO Volume: 63-Year Period (1940 –2002) 4-16

Chapter 5: Conveyance Assessment – 2020 Baseline Conditions 5-1

5.1 Introduction ... 5-1
5.2 Modeling Strategies and Operational Parameters ... 5-3
5.3 Metropolitan Interceptor Sewer / Near Surface Collector Sewer / Inline Storage System
Capacity Evaluation .. 5-4
5.3.1 Extreme Event: Large Simulated Sanitary Sewer Overflow Volume – March 1960 5-4
5.3.2 Extreme Event: Large Simulated Combined Sewer Overflow Volume – August 1986 .. 5-4
5.3.3 Near Surface Collector Sewer Performance ... 5-4
5.4 Sanitary Sewer Overflow and Combined Sewer Overflow Evaluation 5-7
5.4.1 Extreme Event Simulated Combined Sewer Overflow and Sanitary Sewer Overflow Volumes .. 5-7
5.4.2 Combined Sewer Overflow and Sanitary Sewer Overflow Event Frequency 5-8
5.4.3 Sanitary Sewer Overflow Locations and Volumes ... 5-9
5.4.4 Combined Sewer Overflow Locations and Volumes ... 5-9
5.5 Summary ... 5-9

Chapter 5
Tables
5-1 Committed Projects ... 5-2
5-2 Operational Parameters and Simulation Conditions ... 5-3
5-3 Simulated Combined Sewer Overflow and Sanitary Sewer Overflow Volumes for Two Extreme Events Assuming 2020 Baseline Population and Land Use 5-7
5-4 Long-Term Simulation Combined Sewer Overflow and Sanitary Sewer Overflow Results: Mini-MOUSE and MACRO for 2020 Baseline Conditions......................... 5-8
5-5 Simulated Combined Sewer Overflow and Sanitary Sewer Overflow Frequency and Average Annual Overflow Volume for 2020 Baseline Population and Land Use Conditions .. 5-13

Chapter 5
Figures
5-1 Hydraulic Restrictions: Largest SSO Event, Simulated 2020 Conditions 5-5
5-2 Hydraulic Restrictions: Largest CSO Event, Simulated 2020 Conditions 5-6
5-3 Mini-MOUSE SSO Groups, 2020 Conditions .. 5-10
5-4 Mini-MOUSE Simulated SSO Volume: 63-Year Period (1940-2002) 5-11
5-5 Mini-MOUSE Simulated CSO Volume: 63-Year Period (1940-2002) 5-12

Chapter 6: Regulations and Permits .. 6-1
6.1 Introduction ... 6-1
6.2 Sanitary Sewer Overflow Regulations .. 6-1
6.3 Combined Sewer Overflow Statute and Regulations .. 6-2
Chapter 7: Goals and Objectives

Chapter 8: Common Conveyance Facilities, Programs, Operational Improvements and Policies for the Recommended Plan

8.1 Introduction
8.2 Committed Milwaukee Metropolitan Sewerage District Conveyance Projects
8.3 Community-Based Conveyance Requirements
8.3.1 Infiltration and Inflow Management in the Satellite Municipalities
8.4 Recommended Milwaukee Metropolitan Sewerage District Conveyance Projects
8.5 Other Recommended Milwaukee Metropolitan Sewerage District Conveyance Projects
8.5.1 Infiltration and Inflow Management in the Milwaukee Metropolitan Sewerage District System
8.5.2 Force Main from the ISS Pump Station to DC0103
8.5.3 Community Flow Monitoring
8.6 Existing Milwaukee Metropolitan Sewerage District Programs, Operational Improvements, and Policies
8.6.1 Capacity, Management, Operations and Maintenance Program for Milwaukee Metropolitan Sewerage District
8.6.2 Capacity, Management, Operations and Maintenance Programs for Satellite Municipalities and Milwaukee County
8.6.3 System Evaluation and Capacity Assurance Plan for Milwaukee Metropolitan Sewerage District
8.6.4 System Evaluation and Capacity Assurance Plan for Satellite Municipalities and Milwaukee County
Chapter 8
Tables
8-1 Committed Conveyance Projects for the Recommended Plan................................. 8-3
8-2 Recommended Future Projects by Milwaukee Metropolitan Sewerage District 8-6

Chapter 9: Alternatives Development... 9-1
9.1 Introduction ... 9-1
9.2 Approach and Identification of Potential Conveyance Improvement Projects 9-2
9.3 Metropolitan Interceptor Potential Sewer Capacity Enhancement Alternatives 9-10
9.3.1 Project 1 - North 91st Street MIS... 9-10
9.3.2 Project 2 - Milwaukee River MIS ... 9-16
9.3.3 Project 3 - North Range Line Road MIS... 9-20
9.3.4 Project 4 - River Hills MIS... 9-25
9.3.5 Project 5 - Green Bay Avenue/Mill Road MIS.. 9-29
9.3.6 Project 6 - North Santa Monica Boulevard MIS... 9-36
9.3.7 Project 7 - Menomonee River MIS... 9-39
9.3.8 Project 8 - South 35th Street MIS... 9-43
9.3.9 Project 9 - South 81st Street MIS... 9-46
9.3.10 Project 10 - South Howell Avenue MIS.. 9-51
9.3.11 Project 11 - South Sheridan Drive MIS... 9-56
9.3.12 Project 12 - Ryan Road MIS... 9-59
9.3.13 Project 13 - Franklin-Muskego MIS.. 9-63
9.3.14 Project 14 – Real-Time Control Strategy Improvements to DC0103 9-69
9.4 Other Possible Conveyance Recommendations ... 9-72

Chapter 9
Figures
9-1 Potential MIS Relief Projects for 5-year LOP 2020 Baseline............................... 9-6
9-2 Potential MIS Relief Projects for 10-year LOP 2020 Baseline............................... 9-7
<table>
<thead>
<tr>
<th>Page</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-3</td>
<td>Project 1 - North 91st Street MIS 5-year Recommended Alternative Modifications to DC0308 and Lift Station</td>
</tr>
<tr>
<td>9-4</td>
<td>Project 1 - North 91st Street MIS 10-year Recommended Alternative Modifications to DC0308 and Lift Station</td>
</tr>
<tr>
<td>9-5</td>
<td>Project 2 - Milwaukee River MIS 5-year AND 10-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-6</td>
<td>Project 3 - Range Line Road MIS 5-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-7</td>
<td>Project 3 - Range Line Road MIS 10-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-8</td>
<td>Project 4 - River Hills MIS 5-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-9</td>
<td>Project 4 - River Hills MIS 10-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-10</td>
<td>Project 5 Vicinity Map</td>
</tr>
<tr>
<td>9-11</td>
<td>Project 5 - Green Bay Avenue/Mill Road MIS 5-year Recommended Alternative Green Tree Pump Station Force Main</td>
</tr>
<tr>
<td>9-12</td>
<td>Project 5 - Green Bay Avenue/Mill Road MIS 10-year Recommended Alternative Relief Sewer</td>
</tr>
<tr>
<td>9-13</td>
<td>Project 6 - Santa Monica Boulevard MIS 10-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-14</td>
<td>Project 7 - Menomonee River MIS 5-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-15</td>
<td>Project 7 - Menomonee River MIS 10-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-16</td>
<td>Project 8 - South 35th Street MIS 10-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-17</td>
<td>Project 9 - South 81st Street MIS 5-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-18</td>
<td>Project 9 - South 81st Street MIS 10-year Recommended Alternative Sewer Replacement</td>
</tr>
<tr>
<td>9-19</td>
<td>Project 10 - South Howell Avenue MIS 5-year Recommended Alternative Relief Sewer</td>
</tr>
<tr>
<td>9-20</td>
<td>Project 10 - South Howell Avenue MIS 10-year Recommended Alternative Relief Sewer</td>
</tr>
<tr>
<td>9-21</td>
<td>Project 11 - Sheridan Drive MIS 10-year Recommended Alternative I/I Reduction</td>
</tr>
</tbody>
</table>
Chapter 9

Tables

9-1 Simulated Events ... 9-3
9-2 Simulated 5-Year and 10-Year Recurrence Interval Events 9-4
9-3 Metropolitan Interceptor Sewer Potential Conveyance Enhancement
Recommendations for a 5-Year Sanitary Sewer Overflow Level of Protection 9-8
9-4 Metropolitan Interceptor Sewer Potential Conveyance Enhancement
Recommendations for a 10-Year Sanitary Sewer Overflow Level of Protection 9-9
9-5 Options for Future Potential Service to Muskego and Parts of Franklin
and New Berlin Preliminary Cost Estimates ($ Millions) 9-65
9-6 Existing Real Time Control Strategy at DC0103 .. 9-70
9-7 Potential Real Time Control Strategy at DC0103 .. 9-71

Chapter 9

Appendices

9A Infiltration and Inflow Reduction .. 9A-1
9B Conveyance Project Costs ... 9B-1

Chapter 10: Conveyance Recommended Plan 10-1

10.1 Introduction and Plan Summary .. 10-1
10.1.1 Background ... 10-1
10.1.2 Plan Summary ... 10-2

Chapter 10
Tables

10-1 Summary of 2020 FP Conveyance Recommendations – New FPOPs
 Identified by 2020 FP ... 10-4

10-2 Summary of Existing Conveyance FPOPs Recommended by 2020 FP
 to be Continued ... 10-5

10-3 Metropolitan Interceptor Sewer Conveyance Recommendations
 for a 5-year Sanitary Sewer Overflow Level of Protection ... 10-7