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Chapter 1:  Introduction 
 
1.1 Background 
The State of the Art Report (SOAR) has been prepared as part of the coordinated efforts by the 
Southeastern Wisconsin Regional Planning Commission (SEWRPC) and the Milwaukee 
Metropolitan Sewerage District (MMSD).  The two resulting projects are the SEWRPC Regional 
Water Quality Management Plan Update (RWQMPU) and MMSD 2020 Facilities Plan (2020 
FP).  This integrated planning effort is called the Water Quality Initiative (WQI), and this SOAR 
report is a critical element for both planning efforts that form the WQI.  

The WQI uses watershed-based planning for the greater Milwaukee watersheds (GMW), which 
include the Milwaukee River, the Menomonee River, the Kinnickinnic River, the Root River, 
Oak Creek, the Milwaukee Harbor estuary, and a portion of nearshore Lake Michigan and its 
direct drainage area.  Figure 1-1 shows the RWQMPU study area and 2020 FP planning 
boundaries. 

The Wisconsin Department of Natural Resources (WDNR), MMSD, and SEWRPC 
cooperatively developed an inclusive, open and science-based approach to carry out the WQI.  
Under the approach, which was formalized under a February 19, 2003 Memorandum of 
Understanding (1) among these agencies, a collaborative planning process was used to evaluate 
the cost effectiveness and feasibility of sets of technologies, i.e., the alternatives, distinct from 
the responsibility for their implementation, in order to identify an alternative that offers the 
greatest improvement in the water resource at the least total cost to society.  This effort will 
result in an update to the regional water quality management plan for the GMW and support the 
2020 FP. 

To determine the most cost effective method to achieve the greatest improvement in surface 
water quality, the planning programs used the production theory (see Appendix 1A of this 
chapter) to evaluate water pollution control technologies.  This theory was determined to be the 
most logical way to analyze multiple “production” functions (e.g., water pollution control 
technologies) with varied inputs, such as point source and nonpoint source water pollution, and 
outputs, such as reduction of overflow volumes and/or water pollutants.   

Although not included in the SOAR analysis, the impacts on water quality as a result of reducing 
overflows were modeled using the Loading Simulation Program in C++ (LSPC) model, the 
Estuarine Coastal and Ocean Model-Sediment Transport (ECOMSED), and the Row-Column 
AESOP (RCA) model.  The water quality impacts were evaluated in the screening alternatives 
and the preliminary alternatives and were considered in the selection of the components for the 
Recommended Plan.  The concentrations of pollutants in sanitary sewer overflows (SSOs) and 
combined sewer overflows (CSOs) used in the water quality model are shown in Tables 3A-1 
through 3A-3 of Appendix 3A, Point Source Technologies.  Additional information regarding the 
impacts to water quality as a result of reducing overflows can be found in Chapter 9, Alternative 
Analysis of the Facilities Plan Report and Chapter IX, Alternative Plan Description and 
Evaluation of SEWRPC Planning Report No. 50, A Regional Water Quality Management Plan 
Update for the Greater Milwaukee Watersheds.  
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Production theory may in fact be the only scientifically-based method that will achieve the 
desired result of the SOAR analysis, which is to use a science and data-based economic analysis 
to identify the pollution reduction technologies that will produce the most cost efficient 
outcomes in terms of water quality improvement. 

The production theory is an economic evaluation technique first conceived in the 19th century 
and used to evaluate the outputs that can be obtained from various amounts and combinations of 
factor inputs.  A detailed discussion of production theory is found in Appendix 1A, Production 
Theory.   While the technologies could have been analyzed using scientific and engineering 
judgment, it would have been difficult to quantify due to the vast number of technologies that 
were evaluated and the various modeling techniques that were used in the WQI.   

In the production theory, each technology is described by a cost function, a production function, 
a cost benefit relationship, and its interaction with other control technologies.  Using this 
information, technologies that address similar water quality indicators are compared.  Also, 
combinations of technologies working in series or in parallel can be evaluated.  Finally, the best 
combination of technologies that maximizes water quality benefits and minimizes costs is 
determined.  Figure 1-2 shows the general production theory methodology and how it can be 
applied to meet a project’s goals and objectives. 
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1.2 Objectives of the Production Theory Analysis 
The objective of the analysis was to evaluate the potential of both individual technologies and 
multiple technology sets to improve water quality in the GMW for the WQI.  To achieve this 
objective, approximately 170 technologies were included in the initial evaluation.  From these, 
select technologies were further evaluated using the production theory. 

The ultimate objective of the WQI effort is to identify the specific combination of technologies 
that provide the greatest water quality benefit at the lowest total cost, considering both the 
technology screening in this report and input from the stakeholders.  Combinations of 
technologies were first developed to analyze extreme “what-if” situations, or “bookends,” called 
screening alternatives (originally called scenarios).  These screening alternatives were defined 
and developed to address questions from the media, public and other stakeholders regarding 
“what if” situations such as, “if we ended overflows – what would it cost and what would the 
water quality be?”  The screening alternatives were developed as a sensitivity analysis to 
determine: a) what would happen to water quality if we only concentrated on eliminating 
overflows or if we only tried to aggressively control nonpoint source pollution and, b) the 
general costs of each “what-if” situation.  The screening alternatives were not intended to be 
feasible solutions, but rather evaluations of extreme conditions, or “bookends.”  The screening 
alternatives were evaluated to develop preliminary alternatives based upon a broader set of 
considerations, including stakeholder-inspired goals and objectives as well as current regulations.  
A detailed discussion of the screening alternatives is provided in the Facilities Plan Report, 
Appendix 9A, Screening Alternatives.  The relationship of SOAR to the development of 
screening alternatives for both the RWQMPU and the 2020 FP is shown in Figure 1-3.  A similar 
process was used to develop the preliminary alternatives.  A detailed discussion of the alternative 
development process is presented in Chapter IX of SEWRPC Planning Report No. 50, 
Alternative Plan Description and Evaluation and Chapter 9, Alternative Analysis of the Facilities 
Plan Report.  

This report is intended to explain the technology analysis performed for the WQI.  It is not 
intended to cover the following issues: 

♦ Roles and Responsibilities – this is discussed in Chapter 7, Goals and Objectives of the 
Facilities Plan Report. 

♦ Classification of sewer separation technologies (e.g., Level I or Level II) – this is 
discussed in Appendix 10A, CSO Long-term Control Plan of the Facilities Plan Report. 
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Appendix 1A: Production Theory 
 

Production theory is a procedure and an economic tool that is used to determine the most 
efficient way to use resources to achieve a desired goal.  The theory is most often taught and 
used in business applications.  For example, it may be used when making decisions involving the 
cost of producing a product, or when deciding which manufacturing plant of a group of plants is 
most cost efficient to produce a given product.  The basic principle of the production theory is 
that with variable production techniques a producer can choose various capital-labor 
combinations, all of which yield the same output but with varying overall costs.   

For the purposes of the Water Quality Initiative (WQI) joint planning effort, which resulted in 
the Regional Water Quality Management Plan Update (RWQMPU) and 2020 Facilities Plan 
(2020 FP), production theory was used to determine the most efficient combination of 
technologies to achieve the water quality goals and objectives of the public.  Each technology is 
described by a cost function, a production function, a cost benefit relationship, and its interaction 
with other control technologies.  Using these relationships, an optimal combination of 
technologies can be selected.  A description and examples of these components are provided 
below. 

1A.1 Cost Function  

The relationship between the total life cycle cost incurred and the input (level of effort) 
applied.   
Life cycle cost can be expressed in terms of equivalent annual cost or net present worth.  The 
level of effort can be the volume of tunnel storage, square miles of sewer separation or annual 
lane miles of street sweeping.  Figure 1A-1 shows an example of a cost function.   
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1A.2 Production Function 

The relationship between the maximum output (production) that can be achieved from the 
application of a given input (level of effort) 
The production function is the quantitative model of the production process, which can be any 
technology that will contribute to the desired output.  A production function expresses the 
relationship between an organization's inputs and its outputs.  It indicates, in mathematical or 
graphical form, what outputs can be obtained from various amounts and combinations of factor 
inputs.  As described in the cost function above, the level of input is the size or amount of the 
technology that is employed.  The level of output could be million gallons of overflows abated or 
tons of total suspended solids (TSS) removed.  Figure 1A-2 is an example of a production 
function. 

 

1A.3 Cost Benefit Relationship 

The relationship between the output (benefit) of a technology and the cost to achieve that level 
of output 
The cost benefit curve of a technology is the combination of the cost function and the production 
function.  Using this relationship, the cost benefit of individual technologies can be compared.  
An example of a cost benefit relationship is shown in Figure 1A-3. 



Production Function

Level of Effort

O
u

tp
u

t
2,000

1,500

1,000

500

FIGURE 1A-2

EXAMPLE OF
PRODUCTION FUNCTION
2020 STATE OF THE ART REPORT

SOAR_1A.0002.07.04.25.cdr4/25/07



Cost Benefit

A
n

n
u

a
l
E

q
u

iv
a
le

n
t

C
o

s
t

($
1
,0

0
0
)

Output

0 500 1,000 1,500 2,000

FIGURE 1A-3

EXAMPLE OF
COST BENEFIT
2020 STATE OF THE ART REPORT

SOAR_1A.0003.07.04.25.cdr4/25/07



2020 Facilities Plan                                                State of the Art Report 
 
 

 

 
1A-7 

1A.4 Interaction with other Control Technologies 

The relationship between two or more technologies and the impacts on output or cost 
Technologies can be independent of or dependent on other technologies, depending on factors 
such as the type, location, or the specific implementation of the technologies.  When two 
technologies are employed in parallel or in series, there are three potential results: 

1) They have no impact on each other 

2) One technology increases the production of the other 

3) One technology decreases the production of the other 

For example, street sweeping in the combined sewer area does not directly impact the volume of 
tunnel storage required to reduce separate sewer overflows (SSOs).  However, in a separate 
sewer area, street sweeping could reduce the discharge of TSS at a stormwater outfall equipped 
with ultraviolet (UV) disinfection, thereby allowing better light penetration and increased 
disinfection.  Conversely, street sweeping an area tributary to a wet detention pond may decrease 
the production of the pond (i.e., pounds of material removed by the pond) because it would 
reduce the amount of material that would have settled out in the pond.  Careful technical analysis 
is required when employing multiple technologies. 
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The remainder of this Appendix contains a more detailed explanation of the Production Function.  
This information is excerpted from the textbook, The Foundations of Economic Analysis(1).   

 

The Production Function 

________________________________________________________ 

"Until the laws of thermodynamics are repealed, I shall continue to relate outputs 
to inputs -- i.e. to believe in production functions."  

(Paul A. Samuelson, Collected Scientific Papers, 1972: p.174) 

________________________________________________________ 

 

Contents 

(A) The Production Function 
(B) Marginal Productivity 
        (i) The Law of Diminishing Returns 
        (ii) The Law of Variable Proportions 
(C) Isoquant Analysis 

 

(A) The Production Function 

Let us begin with the production function, a function summarizing the process of conversion of 
factors into a particular commodity. We might propose a production function for a good y of the 
following general form, first proposed by Philip Wicksteed (1894): 

y = ƒ(x1, x2, ..., xm) 



2020 Facilities Plan                                                State of the Art Report 
 
 

 

 
1A-9 

which relates a single output y to a series of factors of production x1, x2, ..., xm. Note that in 
writing production functions in this form, we are excluding joint production, i.e. that a particular 
process of production yields more than one output (e.g. the production of wheat grain often 
yields a co-product, straw; the production of omelettes yields the co-product broken egg shells). 
Using Ragnar Frisch's (1965) terms, we are concentrating on "single-ware" rather than "multi-
ware" production. 

For heuristic purposes, the production technology for the one-output/two-inputs case is 
(imperfectly) depicted in Figure 2.1. Output (Y) is measured on the vertical axis. The two inputs, 
which we call L and K which, for mnemonic purposes, can be called labor and capital,, are 
depicted on the horizontal axes. We ought to now warn that henceforth, throughout all our 
sections on the theory of production, all capital is assumed to be endowed, i.e. there are no 
produced means of production. The hill-shaped structure depicted in Figure 2.1 is the 
production set. Notice that it includes all the area on the surface and in the interior of the hill. 
The production set is essentially the set of technically feasible combinations of output Y and 
inputs, K and L.  

 

  

Figure 2.1 - Production function for one-output/two-inputs. 
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A production decision -- a feasible choice of inputs and output - is a particular point on or in this 
"hill". It will be "on" the hill if it is technically efficient and "in" the hill if it is technically inefficient. 
Properly speaking, the production function Y = ƒ (K, L) is only the surface (and not the interior) 
of the hill, and thus denotes the set of technologically efficient points of the production set (i.e. 
for a given configuration of inputs, K, L, output Y is the maximum feasible output). 

Obviously, the hill-shape of the production function indicates that the more we use of the 
factors, the greater output is going to be (at least up to the some maximum, the "top" of the hill). 
The round contours along the production hill can be thought of as topographic contours as seen 
on maps and will serve as isoquants in our later analysis. The slope of the hill viewed from the 
origin captures the notion of returns to scale.  

Throughout the next few sections, we shall be outlining the technical properties of the 
production function. The representation of production functions in the diagrammatic form of 
"hills" and the corresponding analysis of production theory in terms of isoquant contours, etc. 
was initiated by Vilfredo Pareto (1906) and much of the analysis of its technical properties was 
largely advanced by the "Paretian" school of Hotelling, Frisch, Samuelson, Hicks, Shephard, 
etc. between the 1930s and the 1950s. In the 1950s, the Neo-Walrasians (e.g. Koopmans, 
1951; Debreu, 1959) approached the analysis of the technical properties of production in a 
somewhat different spirit. Specifically, instead of focusing on the "production function" and its 
derivatives as the Paretians had done, the Neo-Walrasians preferred to analyze it via vector 
space methods and convex analysis. 

On a more formal note, we should outline the properties of the production function, as normally 
assumed by Neoclassical economists. Let there be m factors of production and let vector x = 
(x1, x2, .., xm) denote a bundle of factor inputs. We shall define an input space as the acceptable 
set of inputs for our economy. Commonly, a bundle of factor inputs x is deemed "acceptable" if 
every entry in that vector, i.e. the quantity of every factor, is a non-negative, finite real number. 
Thus, any input bundle x lies in R+m, the non-negative orthant of m-dimensional Euclidian space. 
Thus, R+m is our input space. 

Let y be output, which is assumed to be a single, finite number, i.e. y ∈ R. Thus, a production 
function ƒ maps acceptable input bundles to output values, i.e. ƒ: R+m → R. More specifically, 
ƒ(x) is the maximum output achievable for a given set of acceptable inputs, x ∈ R+m.  

The following assumptions are often imposed on any generic production function ƒ : R+m → R  
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(A.1) ƒ (x) is finite, non-negative, real-valued and single-valued for all non-
negative and finite x. 

(A.2) ƒ (0, 0, .., 0) = 0 (no inputs implies no output) 

(A.3) If x ≥ x′ , then ƒ (x) ≥ ƒ (x′ ) (monotonicity, i.e. an increase in inputs does not 
decrease output) 

(A.4) ƒ is continuous and twice-continuously differentiable everywhere in the 
interior of the production set. 

(A.5) The set V(y) = {x | ƒ (x) ≥ y} is a convex set (quasi-concavity of ƒ ) 

(A.6) The set V(y) is closed and non-empty for any y > 0. 

These assumptions will be clarified as we go on. For the moment, let us just make the following 
notes. Assumption (A.1) simply defines the production function as a well-defined function of 
inputs ƒ : R+m → R. Nothing new there. Assumption (A.2) simply establishes that one cannot 
produce something from nothing. This is somewhat self-evident, at least for economists. 
Obviously, in other walks of life, one can produce something without inputs (e.g. "nice thoughts" 
can just be, well, "thought up" without inputs), but most examples of these things are outside the 
realm of economics. The monotonicity assumption (A.3) is also straightforward: increasing 
inputs leads to an increase in output (or, more precisely, no decrease in output). Although 
common, we will have more to say on this later. Assumption (A.4) is made largely for 
mathematical ease; later on, we shall relax this assumption somewhat. Assumption (A.5), the 
quasi-concavity of the production function ƒ , is the more interesting one. We shall have much 
more to say on this later. Finally, (A.6) is imposed as a mathematical necessity.  

(B) Marginal Productivity 

The assumptions given earlier imply that, for any given production function y = ƒ (x1, x2, .., xm), it 
is a generally the case that, at least up to some maximum point: 

∂y/∂xi = ƒi ≥ 0 

for all factor inputs i = 1, 2, ..., m. In other words, adding more units of any factor input will 
increase output (or at least not reduce it). This is the heart of assumption (A.3). However, it is 
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also common in Neoclassical theory to also impose (A.5), i.e. to assume "quasi-concavity" of 
the production function. It is often the case in economics that the quasi-concavity assumption 
implies that: 

∂2y/∂xi2 = ƒii < 0 

for all i = 1, .., m, i.e. diminishing marginal productivity of ith factor.  

It is worthwhile to spend a few moments on the diminishing marginal productivity assumption. 
This means more we add of a particular factor input, all others factors remaining constant, the 
less the employment of an additional unit of that factor input contributes to output as a whole. 
This concept performs the same function in production functions as diminishing marginal utility 
did in utility functions. Conceptually, however, they are quite distinct. 

(i) The Law of Diminishing Returns 

The idea of diminishing marginal productivity was simultaneously introduced for applications of 
factors to a fixed plot of land by T.R. Malthus (1815), Robert Torrens (1815), Edward West 
(1815) and David Ricardo (1815). It was applied more generally to other factors of production by 
proto-marginalists such as J.H. von Thünen (1826), Mountiford Longfield (1834) and Heinrich 
Mangoldt (1863). The apotheosis of the concept is found in the work of John Bates Clark (1889, 
1891, 1899) and, more precisely, in Philip H. Wicksteed (1894). It was originally called the "Law 
of Diminishing Returns", although in order to keep this distinct from the idea of decreasing 
returns to scale, we shall refer to it henceforth as the "Law of Diminshing Marginal Productivity" 

Let us first be clear about the definition of the marginal productivity of a factor. Letting Δxi 
denote a unit increase in factor xi, then the marginal product of that factor is Δy/Δxi, i.e. the 
change in output arising from an increase in factor i by a unit. Mathematically, however, it is 
more convenient to assume that Δ x is infinitesimal. This permits us to express the marginal 
product of the factor xi as the first partial derivative of the production function with respect to that 
factor -- thus the marginal product of the ith factor is simply ∂y/∂xi = ƒi. If we do not wish to 
assume that factor units are infinitely divisible or if we do not assume that the production 
function is differentiable, we cannot express the marginal product mathematically as a 
derivative. 

[We should note that both Carl Menger (1871) and John A. Hobson (1900, 1911) defined 
"marginal product" differently: rather than being the output gained by an enterprise from the 
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addition of a factor unit, Hobson defined it as the output lost by the enterprise by the withdrawl 
of a factor unit. This caused a problem for the "adding up" issue in the marginal productivity 
theory of distribution, although, as was clarified later, when marginal product is not defined so 
discretely, it does not make a difference which measure we use. For a useful discussion of the 
dilemma involving the measurement of the "marginal unit", see the discussion in Fritz Machlup 
(1937). Finally, we must note that a far more novel and interesting definition of marginal 
productivity was introduced by Joseph M. Ostroy (1980, 1984) where the concept is redefined in 
terms of contributions to tradeable surpluses, and thus both widened and deepened in scope.] 

However, assuming marginal products exist and are well defined, then why diminishing? Taking 
Clark's famous analogy: 

"Put one man only on a square mile of prairie, and he will get a rich return. Two 
laborers on the same ground will get less per man; and, if you enlarge the force 
to ten, the last man will perhaps get wages only."  

(J.B. Clark, 1890: p.304.) 

The implication, then, is that as we increase the amount of labor applied to a particular fixed 
amount of land, each additional unit will increase total output but by smaller and smaller 
increments. When the field is empty, the first laborer has absolutely free range and produces as 
much as his body can reasonably do, say ten bushels of corn. When you add a second laborer 
to the same field, total output may increase, say to eighteen bushels of corn. Thus, the marginal 
product is eight. 

Why? The basic idea is that by adding the second man, the field gets "crowded" and the men 
begin to get in each other's way. If that explanation does not seem credible, think of the units of 
labor in terms of labor-hours for a single man: in the first hour, a particular man produces ten; in 
the second hour he produces eight, etc. The diminution can be explained in this case as an 
"exhaustion" effect.  

Taking another example, suppose we apply a man to a set of shoe-making tools and a given 
swathe of leather; let us say he can produce ten pairs of shoes in a day. Add a second man to 
this without adding more shoe-making tools or increasing the leather, and one can easily 
envisage that more shoes get made in a day, but that the work of the shoe-makers slows down 
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as they pick up the same tools in an alternating sequence of turns and perhaps fight over them 
a bit. 

For other factors, different stories are told. In Ricardo's original story, the land is subject to 
diminishing marginal returns because of the assumption that land has different degrees of 
fertility and the most fertile acres are used first, and the less fertile ones added later. We can 
conceive this more simply in that increasing the amount of land without increasing the amount of 
labor that works on it will lead to less output per worker. 

However it is justified, many Neoclassical theorists basically accept diminishing marginal 
productivity as an axiom - "the diminishing marginal productivity of labor, when it is used in 
connection with a fixed amount of capital, is a universal phenomenon. This fact shows itself in 
any economy, primitive or social." (Clark, 1899: p.49). However much early economists tried to 
claim it to be a natural law, this "axiom" turns out to be closer to a rather debatable assumption 
(cf. Karl Menger, 1954). 

Nonetheless, it is important to clearly note a few matters in relation to this. Firstly, the idea that 
marginal product is always diminishing can be disputed (and will be disputed). Francis A. 
Walker (1891) took J.B. Clark to task for not recognizing the possibility of increasing marginal 
productivity (albeit, see Clark (1899: p.164)). 

Secondly, as Pareto (1896, 1902) was quick to point out, it is not always true that if one adds a 
unit of a factor to an existing production process, output will increase. "If a pit has to be dug, the 
addition of one more man will make little difference to the day's output unless you give the man 
a spade" (Cassel, 1918: p.179). This difficulty is even more clear if we see the problem in terms 
of the marginal product of capital: if a pit has to be dug, the addition of one more spade will 
make no difference to output unless you add a man to use it. Thus, one must be very careful 
when pronouncing the idea of marginal productivity since we may need to produce in fixed, 
constant factor proportions. 

Thirdly, it is important to underline that the marginal product is not, properly speaking, the 
contribution of the marginal unit by itself. Some commentators (e.g. E.v. Böhm-Bawerk, 19??; 
cf. Robertson, 1931) seem to have gone on to make arguments that seem to imply, in the 
context of our example, that the second man produces eight bushels of corn. Of course, this is 
not necessarily true. The second man may very well produce nine or ten or eleven and still the 
total output increases only to eighteen because the first man reduces his output to nine, or eight 
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or seven in the presence of the second. In our example, output increases from ten bushels to 
eighteen bushels when one adds the second man not because the second man only adds eight, 
but rather because his presence on the field makes the situation such that the total output of 
both men is eighteen. Notice that the contribution per man is reduced: the average product is 
actually nine. This may very well be how much each of the two laborers contributes. But this is 
not what interests us: what we wish to note is that by adding the second man, output was 
increased by eight. Thus, the marginal product of the second man is eight. But his actual 
contribution may be very different than this.  

Finally, and above everything, it is very important to note that in deriving the marginal product of 
a factor, we are holding all other factors fixed. Specifically, in our earlier example, labor varied 
and land (and indeed all other factors) was fixed. Thus, diminishing marginal productivity has 
nothing to do with "returns to scale", i.e. the increase in output when we increase all factors. If 
we increased both land and labor in our example, then there might very well be no reduction in 
output per man (indeed, there is actually no reason for it, but we shall return to this later). 

(ii) The Law of Variable Proportions 

Marginal productivity is not obvious in the production function Y = ƒ (L, K) in Figure 2.1 as both 
inputs are varying there. We must first fix one of the factors and let the other factor vary. This is 
shown in Figure 2.2, by the "reduced" production function Y = ƒ (L, K0), where only labor (L) 
varies while capital is held fixed at K0. To obtain this from the former, we must figuratively "slice" 
the hill in Figure 2.1 vertically at the level K0. Thus, Figure 2.2, which represents the reduced 
production function Y = ƒ (L, K0), is a vertical section of the hill in Figure 2.1. A reduced 
production function where all factors but one are held constant are often referred to as the "total 
product" curve. 
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Figure 2.2 - Total Product Curve 

The total product curve in Figure 2.2 can be read in conjunction with the average and marginal 
product curves in Figure 2.3. The total product curve is originally due to Frank H. Knight (1921: 
p.100), and much of the subsequent analysis is due to him and John M. Cassels (1936). 
Although both these sets of curves have long been implicit in much earlier discussions (e.g. 
Edgeworth, 1911), average and marginal products were confused by early Neoclassicals with 
surprising frequency. The particular shape of the total product curve shown in Figure 2.2 
exhibits what has been baptized by John M. Cassels (1936) as the Law of Variable Proportions 
-- effectively what Ragnar Frisch (1965: p.120) quirkily renamed the ultra-passum law of 
production.  

The marginal product of the factor L is given by the slope of the total product curve, thus MPL = 
∂ Y/∂ L = dƒ (L, K0)/dL. As we see, at low levels of L up to L2 in Figure 2.2, we have rising 
marginal productivity of the factor. At levels of L above L2 we have diminishing marginal 
productivity of that factor. Thus, marginal productivity of L reaches its maximum at L2. We can 
thus trace out a marginal product of L curve, MPL, in Figure 2.3. The labels there correspond to 
those of Figure 2.2. Thus the MPL curve in Figure 2.3 rises until the inflection point L2, and falls 
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after it. It becomes negative after L5 - which would be equivalent to the "top" of the reduced 
production function, what Frisch (1965: p.89) calls a "strangulation point". A negative marginal 
product is akin to a situation when one adds the fiftieth worker to a field whose only 
accomplishment is to get in everyone else's way - and thus does not increase output at all but 
actually reduces it. 

The slope of the different rays through the origin (O1, O2, O3, etc.) in Figure 2.2 reflect average 
products of the factor L, i.e. APL = Y/L. The steeper the ray, the higher the average product. 
Thus, at low levels of output such as Y1, the average product represented by the slope of O1 is 
rather low, while at some levels of output such as Y3, the average product (here the slope of O3) 
is much higher. Indeed, as we can see, average product is at its highest at Y3, what is 
sometimes called the extensive margin of production. Notice that at Y2 and Y4 we have the 
same average product (i.e. the ray O2 passes through both points). The average product curve 
APL corresponding to Figure 2.2 is also drawn in Figure 2.3.  

 

  

Figure 2.3 - Marginal Product and Average Product curves 
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As we can see in Figure 2.2, the slope of the total product curve is equal to the slope of the ray 
from the origin at L3, thus average product and marginal product are equal at this point (as 
shown in Figure 2.3). We also know that as the ray from the origin associated with L3 is the 
highest, thus average product curve intersects the marginal product curve, MPL = APL, exactly 
where the average product curve is at its maximum. Notice that at values below L3, MPL > APL, 
marginal product is greater than average product whereas above L3, we have the reverse, MPL 
< APL. We shall make use of these results later on. 

As we can see in Figure 2.3, it seems that we can have increasing as well as diminishing 
marginal productivity of labor, as suggested by Walker (1891) and finally acknowledged by 
Clark (1899: p.164). However, we have already gone a long way in arguing for diminishing 
marginal productivity that it seems that we must be excluding points where there is rising 
marginal productivity, i.e. those points to the left of L2.  

How might such a restriction be justified? In effect, the argument is that in situations of 
increasing marginal productivity, one can always discard factors and increase output (cf. F.H. 
Knight, 1921: p.100-104; G. Cassel, 1918: p.279; J.M. Cassels, 1936; A.P. Lerner, 1944: p.153-
5). Consider the following example. Assume we have an acre of ripened land to which we are 
going to apply various quantities of workers. The one lonely worker produces 10 bushels of 
wheat; two workers will produce 22 bushels of wheat; three workers will produce 36 bushels.  
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Thus, we see: 

Qty. of Labor Total Product Average Product Marginal Product 

One Laborers 10 10 10 

Two Laborers 22 11 12 

Three Laborers 36 12 14 

 

Thus, there is increasing average product and increasing marginal product of labor in this 
example. Why? One can think of it as follows. When we apply one lonely worker to an entire 
acre of ripened land, his running around the entire acre trying to harvest it will produce a lower 
average product than if we had three workers, each working a third of the field by himself.  

This should already reveal why we would never see a situation of increasing average product. 
Basically, when we are faced with a situation of a single worker on an acre of land, why should 
we force him to work on the entire acre and only produce 10 units of output? Average product 
(and total product) would be higher if instead of forcing that single worker to try to harvest the 
entire acre, we let him confine himself to a third of that acre, and let the other two-thirds of the 
plot lie untouched. In this case, the average product of the single worker is as it would have 
been had there been three harvesters, i.e. 12 units of output. In other words, in situations of 
rising average and marginal product, total output is increased by discarding two-thirds of the 
land! Thus, situations of increasing marginal productivity will simply never be seen. 

Of course, this logic is not unassailable. While the idea may apply naturally to some cases, it 
can be questioned in cases where division of labor is crucial as, say, we might have in an 
automobile factory. Suppose that the average productivity of a worker is highest when there are 
twenty men working on a factory floor, each worker specializing in fitting a special part of the 
automobile. We cannot subsequently do the same operation we did before. In other words, we 
cannot remove nineteen men and let 19/20ths of the car remain unbuilt. The only remaining 
man, whose productivity was highest when he only fitted wheels on axles, will not yield any 
output if he is permitted to perform only his specialized task bereft of the other nineteen men. 
Instead of having cars as output in that case, we would have axles-with-wheels.  
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Consequently, we see that in order to produce any cars whatsoever, the lone man must be 
forced to perform all the tasks, not only the fitting of wheels on axles. If this is true, his 
productivity by himself, where product is measured in number of cars produced rather than 
axles-with-wheels, will be lower than if he worked together with his nineteen colleagues.  

The automobile case shows an example of indivisibility in production, a traditional explanation of 
increasing marginal productivity (e.g. Edgeworth, 1911; Lerner, 1944). Production is divisible if it 
"permits any particular method of production, involving certain proportions between factors and 
products, to be repeated in exactly the same way on larger or on a smaller scale." (Lerner, 
1944: p.143). In other words, in a perfectly divisible world, there cannot be changes in method 
when increasing or decreasing the scale of production. In our automobile example we have 
indivisibility: when we remove the nineteen men, the remaining man who previously only placed 
axles on wheels must change his method and do all the tasks in the construction of the 
automobile. In contrast, our agricultural example was divisible: a laborer working exclusively on 
his portion of the field will not change his method of harvesting that third of the field when the 
other laborers on the other the remaining two-thirds of the field are removed. 

In sum, increasing marginal productivity, especially in cases where specialization is vital, can be 
ostensibly encountered in the real world where there are indivisibilities in production. 
Nevertheless, much of the Neoclassical work on the production function omits this. This is, as 
noted earlier, is often taken axiomatically, but the question of whether one finds it an acceptable 
assumption is largely an empirical one. 

(C) Isoquant Analysis 

The contours along the production "hill" in Figure 2.1 are the isoquants shown in Figure 2.4. A 
particular isoquant denotes the combinations of factors K and L which produce the same 
quantity of output. As we are assuming factors K and L are continuously substitutable (on which 
we will have more to say later), then every point on a particular isoquant represents a particular 
feasible technique, or factor combination, that can be used to produce a particular level of 
output. The isoquants play the same topographic role to the production "hill" as indifference 
curves played in the the "utility hill". As the isoquants ascend to the northeast, the amount of 
output produced increases, thus Y′ < Y* < Y′ ′ . 
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Figure 2.4 - Isoquants 

It is an elementary matter to derive the slope of an isoquant. For our two-factor case, we had a 
production function Y = ƒ (L, K). Now, for the production of a given fixed quantity of output (call it 
Y*), it follows that Y* = ƒ (L, K). This is the formula for a particular isoquant. Totally 
differentiating this: 

dY* = ƒLdL + ƒKdK 

where ƒL = ∂Y/∂L and ƒ K = ∂Y/∂K are the marginal products of labor and capital respectively, 
evaluated around Y*. Since on any isoquant, output is fixed at Y*, then dY* = 0. This implies that 
ƒLdL = -ƒKdK, or simply: 

-dL/dK|Y* = ƒK/ƒL 

The term on the left is the negative of the slope of the isoquant corresponding to output level Y*. 
This is known as the marginal rate of technical substitution (MRTS), i.e. the rate at which capital 
can be susbstituted for labor while holding output constant along an isoquant. (note that dL/dK 
by itself is already negative, thus the MRTS will be a positive number). Provided our isoquants 
are smoothly differentiable, we will be able to define the MRTS at any point in Figure 2.4. Thus, 
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the MRTS depends not only on the level of output (which isoquant we are on), but also the 
amounts of capital and labor (where on the isoquant we are). 

The equality of the MRTS with the ratio of marginal products of capital and labor, ƒK/ƒL, is a 
fundamental feature of production theory and helps us capture the concept of diminishing 
marginal productivity to a factor. In Figure 2.4, on isoquant Y*, as we move from point a to b to c 
to d, we are moving towards greater employment of K and less employment of L to produce a 
given level of output Y*, thus we are moving from labor-intensive techniques (i.e. low capital-
labor ratios) towards capital-intensive techniques (high capital-labor ratios). Notice also that the 
isoquant becomes flatter as we move from a to d, thus the marginal rate of technical substitution 
is higher at a than at d, i.e. MRTSa > MRTSb > MRTSc > MRTSd. Thus, there is diminishing 
marginal rates of technical substitution as we move from a towards d.  

Notice that this declining MRTS arises because of the convexity of the isoquants. As we can 
notice, the declining MRTS effectively can capture something akin to (but not exactly) of the 
assumption of diminishing marginal productivity to a factor we spoke of earlier. Compare only 
the points b and c. As MRTSb > MRTSc, then ƒK/ƒL|b > ƒK/ƒL|c. But point b represents a lower 
capital-labor ratio than point c, i.e. K/L|b < K/L|c. Thus, we can interpret the declining MRTS as 
saying that as we move from lower capital-intensity to higher capital intensity (b to c), the 
marginal product of capital decreases. Reciprocally, as we move from higher labor-intensity to 
lower labor-intensity (b to c), the marginal product of labor increases.  

Note that we cannot derive diminishing MRTS from the assumption of diminishing marginal 
productivity of factors. To see this, consider the production function, Y = ƒ (K, L). The MRTS at 
any point is ƒ K/ƒ L. In order to have diminishing MRTS, then it must be that dMRTS/dK < 0. But 
as dMRTS/dK = d(ƒ K/ƒ L)/dK and ƒ K and ƒ L vary with K and L, then we must take total 
derivatives. Thus: 

dMRTS/dK = d(ƒK/ƒL)/dK  

= [(ƒKK + ƒKL·dL/dK)ƒ L - (ƒLK + ƒLL·dL/dK)ƒ K]/ƒL2 

as dL/dK = -ƒ K/ƒ L along any isoquant and given that ƒKL = ƒLK by Young's Theorem, then: 

dMRTS/dK = [ƒ KK ƒL - 2ƒLK ƒK + ƒ LL·ƒK2/ƒL]/ƒ L2 
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or simply: 

dMRTS/dK = [ƒ KKƒ L2 - 2ƒLK ƒKƒL + ƒLL·ƒK2]/ƒ L3 

Now, by assumption, ƒ K, ƒ L > 0 and, by diminshing marginal productivity, ƒKK < 0 and ƒLL < 0. 
This is obviously not sufficient to determine the sign of dMRTS/dK. Specifically, the numerator 
will only be negative if, in addition, we assume that ƒ LK > 0, and the theory of diminishing 
marginal productivity implies no such thing. Thus, a diminishing MRTS is, in itself, an separate 
assumption. 

We should note, however, that not every point along the isoquant is relevant. The isoquants, 
after all, are contours of our "production" hill and thus are actually "circular". This is captured in 
Figure 2.5, where we show the isoquants in their full topographic glory as a horizontal section of 
the production hill of our earlier Figure 2.1. Notice that the isoquant labels represent increasing 
output levels, Y < Y′ < Y′ ′ < Y′ ′ ′ , etc. The "top of the hill", the highest output achievable, is 
represented by point M in the center, achieved by factor combination LM and KM. Notice that if 
we are the top of the hill, if we increase factor inputs (above KM or LM), output will actually 
decline. 

 

Figure 2.5 - Isoquants with Ridge Lines 
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We have also added dashed "ridge lines" to the topographic map in Figure 2.5. Only those 
points within the ridge lines, in the lightly shaded region, are of economic relevance. To see 
why, return to Figure 2.4 and notice that at point a, the isoquant has a vertical slope and a point 
d, the isoquant has a horizontal slope. Thus, MRTSa = ƒ K/ƒ L|a = ∞ and MRTSd = ƒ K/ƒ L|d = 0. 
But our isoquants seem to continue beyond them, yet we assert that points beyond them are 
economically irrelevant.  

Why? Consider a factor combination such as at point e in Figure 2.4. Obviously, here, the slope 
of the isoquant is positive, i.e. dL/dK|e > 0, which implies, in turn, that MRTSe = ƒ K/ƒ L < 0, thus 
the marginal product of one of the factors is negative. This violates the first assumption we 
made about the production function: namely, that ƒ i > 0 for all i, i.e. increasing the employment 
of any factor in a production process will always increase output. Thus, we ought to exclude all 
regions where marginal products are negative. 

Is this assumption reasonable? Well, notice that at point e, we are employing factors Ke and Le 
to produce output level Y*. Yet, we could decrease the amount of capital employed to Kd and 
leave labor at Le in order to achieve a combination at point f. But notice that as point f is above 
the isoquant Y*, it effectively represents a higher level of output. Thus, if we are at a point such 
as e, then by reducing factor inputs we can increase output: such factor combinations are 
therefore not "economical". Consequently we can rule out point e - and, indeed, all factor 
combinations on the isoquant Y* beyond d in Figure 2.4. Similarly, we exclude points on the 
isoquant beyond point a for the same reason.  

The "ridge lines" drawn in Figure 2.5, pass through limiting points of the various isoquants akin 
to points a and d in Figure 2.4. In other words, at any point on the upper ridge line, MRTS = ∞ 
for the relevant isoquant, while at any point on the lower ridge line, MRTS = 0 for the relevant 
isoquant. Thus, we exclude all regions above the upper ridge line and below the lower ridge line 
as economically irrelevant. Only the lightly shaded area in Figure 2.5 is "relevent". Notice that 
the ridge lines meet at point M, the "top" of the production "hill". 

On a more formal note, we should connect the quasi-concavity of the production function to the 
convexity of the isoquants in general. A function ƒ is quasi-concave if, for any two input bundles 
x, x′ ∈ R+m  

if ƒ (x) ≥ ƒ (x′ ), then ƒ (λ x + (1-λ )x′ ) ≥ ƒ (x′ ) for any λ ∈ (0, 1).  
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In other words, the output produced from a convex combination (i.e. weighted average) of two 
bundles of inputs is at least as great as the smaller of the two outputs produced using only one 
or the other input bundles. A special case of quasi-concave function is simply a concave 
function, namely for any two input bundles x, x′ ∈ R+m: 

ƒ (λ x + (1-λ )x′ ) ≥ λ ƒ (x) + (1-λ )ƒ (x′ ) for any λ ∈ (0, 1).  

which states that the output produced from a convex combination of inputs is at least as great 
as the convex combination of the outputs produced by the input bundles independently.  

The definition of quasi-concavity we used in (A.5) states that V(y) = {x | ƒ (x) ≥ y} is convex. In 
other words, a function is quasi-concave if the upper contour set V(y) is convex. As we see, this 
"upper contour set" V(y) is merely the isoquant defined by y and the area above that isoquant. 
This is illustrated in Figure 2.6. Y* is the isoquant of relevance, thus V(Y*), the shaded area, is 
the upper contour set.  

  

Fig. 2.6 - Upper Contour Set and Convexity 

[It is worth pointing out now what the assumption (A.6) on production meant. Effectively, if V(y) 
has an interior point, then (A.6) intuitively states that for any upper contour set V(y), there is a 
factor bundle "inside" it (e.g. x′ ′ in Figure 2.6). In order to guarantee (A.6), it is common practice 
in Neo-Walrasian production theory to impose the assumption of free disposibility in production. 
What this assumption states, effectively, is that if one can produce a particular level of output y 
with input bundle x, then one can produce an amount of output which is less than y with that 
same input bundle, x or, equivalently, one can produce the same level of output y with more 
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inputs. The idea is that the producer just costlessly throws away the "extra" that has been 
produced or, equivalently just throws away some of the extra factors rather than using them. 
Thus, in Figure 2.6, x′ ′ can be used to produce y if the extra amount normally produced by x′ ′ 
is "thrown away" or if the extra factors are just left unused by the producer. The free disposal 
assumption, then, is meant to guarantee at least the technical possibility of "inefficient" 
production, and thus interior points to the production set and the input requirement sets. 
However extensively used in production theory, it might be regarded nonetheless as somewhat 
stronger assumption than one might wish for and, thus many economists have endeavoured to 
dispose of it.] 

It can be easily proven that if a function is quasi-concave in the sense defined earlier, then its 
upper contour set is necessarily convex. To see this intuitively, let x and x′ be two points on the 
same isoquant, thus ƒ (x) = ƒ (x′ ), as shown in Figure 2.6. Thus, quasi-concavity implies that 
the output produced by any convex combination of the two points x and x′ is greater than the 
output produced by either point individually. In other words, the convex combination of two 
points on the same isoquant will lie on a higher isoquant. In Figure 6, we see that λ x + (1-λ )x′ 
is indeed within V(y), thus it will lie on a higher isoquant. This implies precisely the convex 
shape of the isoquant curves which implies, in turn, the convexity of the upper contour set V(y). 

A final characterization of quasi-concavity makes use of the bordered Hessian matrix. The 
bordered Hessian matrix of a twice-continuously differentiable function y = ƒ (x1, x2, .., xm) is 
defined as follows: 

  0 ƒ 1 ƒ 2 ... ƒ m 

  ƒ 1 ƒ 11 ƒ 12 ... ƒ 1m 

B = ƒ 2 ƒ 21 ƒ 22 ... ƒ 2m 

  : ... ... ... ... 

  ƒ m ƒ m1 ƒ m2 ... ƒ mm 

where ƒ i is the first partial derivative of the production function with respect to factor xi and ƒ ij 
are the second derivatives, all evaluated at a particular factor combination x.  
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If the production function is quasi-concave, then we know that the bordered Hessian of that 
function evaluated at any input bundle x ∈ R+m will be negative semi-definite, i.e. its principal 
leading minors will alternate in sign. Specifically: 

0 ƒ 1  

ƒ 1 ƒ 11 ≤ 0 

  

0 ƒ 1 ƒ 2  

ƒ 1 ƒ 11 ƒ 12 ≥ 0 

ƒ 2 ƒ 21 ƒ 22  

... etc. 

Notice that the very first principal minor implies that -ƒ 12 ≤ 0, which is true whether ƒ 1 ≥ 0 or ƒ 1 
≤ 0, so quasi-concavity does not rule out negative marginal products. The second principal 
minor implies: 

-ƒ 1 [ƒ 1ƒ 22 - ƒ 2ƒ 21] + ƒ 2[ƒ 1ƒ 12 - ƒ 2ƒ 11] ≥ 0 

as, byYoung's Theorem, ƒ 21 = ƒ 12, this is reducible to: 

2ƒ 1ƒ 2ƒ 21 - ƒ 12ƒ 22 - ƒ 22ƒ 11 ≥ 0. 

Now, even if ƒ 1 ≥ 0 and ƒ 2 ≥ 0 by assumption, there is little implied by this condition. In other 
words, quasi-concavity of the production function is not sufficient to guarantee diminishing 
marginal productivities, i.e. ƒ 11 ≤ 0, ƒ 22 ≤ 0, etc.  

In contrast, concavity of the production function is, indeed, enough to yield diminishing marginal 
productivity. We can verify this by just examining the Hessian for the production function. This 
is: 

  ƒ 11 ƒ 12 ... ƒ 1m 
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H = ƒ 21 ƒ 22 ... ƒ 2m 

  ... ... ... ... 

  ƒ m1 ƒ m2 ... ƒ mm 

where, note, the border is omitted. Concavity implies that the Hessian matrix must be negative 
semi-definite, by which we mean that the principle leading minors alternate in sign. This implies 
that: 

ƒ 11 ≤ 0 

ƒ 11 ƒ 12  

ƒ 21 ƒ 22 ≥ 0 

... etc. 

Notice that the very first principal leading minor states that ƒ 11 ≤ 0, i.e. negative marginal 
productivity for input 1. As we can order inputs anyway we wish, then this effectively generalizes 
to stating that every factor exhibits diminishing marginal productivity, i.e. ƒ ii < 0 for all i = 1, 2, .., 
m. Thus, while quasi-concavity cannot guarantee diminishing marginal productivity to factor 
inputs, concavity does indeed guarantee it. However, we should note that there are special 
cases when quasi-concavity of the production function guarantees diminishing marginal 
productivity - namely, under constant returns to scale. We will have more to say on this later. 
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